当前位置: 首页 >> 学术报告 >> 正文

Stability of a non-autonomous reaction-diffusion food chain system with feedback control and time-varying delays

来源:明理楼C302B     报告人:王长有    审核:李早元    编辑:刘书妍     发布日期:2025年12月16日    浏览量:[]

报告题目:Stability of a non-autonomous reaction-diffusion food chain system with feedback control and time-varying delays

报 告 人:王长有 教授

报告时间:12171000-1200

报告地点:明理楼C302B

报告人简介:

王长有,博士,成都信息工程大学三级教授、学术委员会及教学指导委员会委员、应用数学中心学术委员会主任、研究生导师;美国数学评论(Mathematical Reviews) 评论员,国际SCI期刊《Mathematics》、《Axioms》的客座编辑,四川省、重庆市、广西壮族自治区等省市自治区自然科学奖及自然科学基金评审专家。曾任重庆市数学学会理事,重庆邮电大学三级教授、应用数学研究所所长、数学学科负责人、研究生导师。在《Applied Mathematical Modelling》、《Applied Mathematics Letters》、《Journal of Mathematical Analysis and Applications》、《Physica A-Statistical Mechanics and Its Applications》、《International Journal of Biomathematics》、《Advances in Continuous and Discrete Models》、《Acta Mathematica Scientia, Series B》等国内外核心以上刊物发表学术论文150余篇,其中被SCI收录60余篇;在科学出版社、Multidisciplinary Digital Publishing InstituteMDPI)等出版社出版学术专著3部;主持(或主研)省部级以上科研项目16项。主要研究领域包括:时滞反应扩散方程、生物数学、分数阶时滞神经网络、模糊差分动力系统、图像及视频处理。

报告内容摘要:

This study develops a novel non-autonomous diffusion-driven food chain model incorporating time-varying delays, feedback control mechanisms, and a Michaelis-Menten functional response to address limitations in traditional ecological models. By integrating spatiotemporal dynamics with realistic biological interactions, we derive rigorous theoretical conditions for the existence and global asymptotic stability of spatially homogeneous periodic solutions using a hybrid analytical framework combining fixed point theory, Lyapunov functionals, and limit approximation methods. The model accounts for environmental fluctuations and delayed responses, revealing critical dependencies of population persistence on diffusion rates, feedback control strengths, and delay structures. Numerical simulations parameterized with empirical data validate these findings, demonstrating delay-induced oscillations, trophic cascade propagation, and feedback-mediated stabilization under environmental stochasticity. Results highlight the model's capacity to predict population resilience in changing environments, offering mechanistic insights for conservation biology, pest management, and ecosystem resilience assessment. This work bridges a gap between theoretical reaction-diffusion systems and complex ecological realities, providing a foundational framework for predicting species responses to climate change and habitat fragmentation while emphasizing the stabilizing role of adaptive feedback in maintaining ecosystem balance.

  主办单位:理学院

科学技术发展研究院

下一条:四川盆地天然气开发与数智化发展

关闭