报告题目:Pore-Scale Flow in Tight Rocks: An Integrated Experimental–Theoretical Framework for Geologic Storage and Unconventional Reservoirs (致密岩石孔隙尺度流动:面向非常规油气藏的一体化实验与理论框架)
报 告 人:杨韵 博导
报告时间:12月24日 16:00-18:00
报告地点:全国重点实验室A403报告厅
报告人简介:
杨韵博士现任美国怀俄明大学能源资源学院研究科学家。此前先后在洛斯阿拉莫斯国家实验室、卡尔加里大学从事博士后研究工作。她于美国宾夕法尼亚州立大学分别获得能源与矿物工程博士学位和油气工程硕士学位,并在塔尔萨大学取得石油工程学士学位。杨韵博士主要聚焦多孔介质中多尺度、多物理场耦合流动与传输机理开展研究,面向非常规油气开发及CO2、H2地质储存等关键科学与工程问题。她主持和参与了多项美国能源部及国家实验室资助项目,包括地质氢储存、碳矿化、深部煤层CO2地质储存以及怀俄明Sweetwater碳储集枢纽CarbonSAFE等课题。她的研究在气体在储层岩石中的扩散与吸附动力学、储层盖层封堵性能评价以及非常规天然气采收与CO2驱提高采收率等方面取得了系统性研究成果,已在PNAS Nexus、Applied Energy、SPE Journal、ACS Earth and Space Chemistry等国际知名期刊发表论文26篇。
报告内容摘要:
The talk focuses on the challenges of unconventional gas recovery in ultra-low-permeability shale and coal reservoirs, where recovery factors are typically below 20% despite supplying most of the natural gas in the U.S. Because flow in these tight, heterogeneous rocks is poorly characterized, especially the multiscale transport from matrix to fractures (diffusion, desorption, etc.), there is both low recovery and a risk of long-term fugitive emissions. The speaker frames two key questions: (1) how pore structure controls gas desorption and diffusion in shale/coal matrices, and (2) how to optimize pressure management and engineering strategies to maximize recovery efficiency in unconventional reservoirs. To address these questions, the talk presents an integrated experimental–theoretical framework that links lab-scale measurements to field-scale reservoir simulation. This includes: (1) high-pressure/high-temperature adsorption experiments using an improved volumetric setup to obtain reliable adsorption isotherms for multiple gases on organic-rich rocks; (2) investigation of gas adsorption and kinetics in nanopores, highlighting the limits of simple Langmuir models in heterogeneous media; (3) development of mechanistic, multiscale flow models for nanoporous networks using concepts such as fractal theory to capture diffusion behavior; and (4) exploration of cryogenic fracturing as a feasible method to enhance diffusion-dominated flow by altering pore and fracture structures from the pore scale to the fracture scale. Together, these components aim to build a physics-based foundation for better forecasting and improving unconventional gas production while managing environmental risks.
主办单位:油气藏地质及开发工程全国重点实验室
西南石油大学ARMA学生分会
石油与天然气工程学院
科学技术发展研究院